

Australian Critical Rare Earth Minerals

Mineral Sands and Rare Earths Conference 19 and 20 March 2024

ASX I OD6

Important Information

Disclaimer

This presentation has been prepared by OD6 Metals Ltd (ACN 654 839 602) (**OD6**) and is current as at the date of this document. The information contained in this presentation is for informational purposes only and does not constitute an offer to issue, or arrange to issue, securities or other financial products. The information contained in this presentation is not investment or financial product advice and is not intended to be used as the basis for making an investment decision. The presentation has been prepared without considering the investment objectives, financial situation or needs of any particular person. Before making an investment decision, you should consider, with or without the assistance of a financial adviser, whether an investment is appropriate considering your particular investment needs, objectives and financial circumstances. Past performance is no guarantee of future performance. Any securities that may be issued by OD6 should be considered or that any dividend will be paid or that there will be an increase in the price or value of OD6's shares in the future.

No representation or warranty, express or implied, is made as to the fairness, accuracy, completeness or correctness of the information, opinions and conclusions contained in this presentation. To the maximum extent permitted by law, none of OD6, its directors, employees or agents, nor any other person accepts any liability, including, without limitation, any liability arising out of fault of negligence, for any loss arising from the use of the information contained in this presentation. In particular, no representation or warranty, express or implied is given as to the accuracy, completeness or correctness, likelihood of achievement or reasonableness or any forecasts, prospects or returns contained in this presentation nor is any obligation assumed to update such information. Such forecasts, prospects or returns are by their nature subject to significant uncertainties and contingencies.

No New Information

The information in this report relating to the Mineral Resource estimate for the Splinter Rock Project is extracted from the Company's ASX announcement dated 17 July 2023. OD6 confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the Mineral Resource estimate continue to apply.

This document contains information extracted from ASX market announcements reported in accordance with the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (2012 JORC Code) and available for viewing at https://www.od6metals.com.au/investors/asx-announcements/. OD6 confirms that it is not aware of any new information or data that materially affects the information included in any original ASX market announcement.

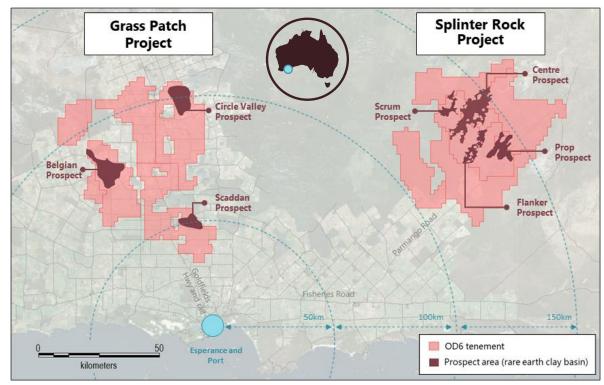
Forward Looking Statements

Certain statements contained in this presentation, including information as to the future financial or operating performance of OD6 and its projects, are forward looking statements. Such forward looking statements:

- may include, among other things, statements regarding incomplete and uncertain proposals or targets, production and prices, operating costs and results, capital expenditures, and are or may be based on assumptions and estimates related to future technical, economic, market, political, social and other conditions;
- are necessarily based upon several estimates and assumptions that, while considered reasonable by OD6, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies; and
- involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forwardlooking statements.

OD6 disclaims any intent or obligation to update publicly any forward-looking statements, whether as a result of new information, future events or results or otherwise. The words "believe", "expect", "anticipate", "indicate", "contemplate", "target", "plan", "intends", "continue", "budget", "estimate", "may", "will", "schedule" and similar expressions identify forward looking statements. All forward looking statements made in this presentation are qualified by the foregoing cautionary statements. Recipients are cautioned that forward looking statements are not guarantees of future performance and accordingly investors are cautioned not to put undue reliance on forward looking statements due to the inherent uncertainty therein.

No representation is made that, in relation to the tenements the subject of this presentation, OD6 has now or will at any time in the future develop further resources or reserves within the meaning of the Australian Code for Reporting of Exploration Results, Mineral resources and Ore Reserves (**The JORC Code**).


Globally significant clay-hosted rare earth discovery

100%-owned project areas in one of the world's great mining jurisdictions

Splinter Rock Maiden Inferred Mineral Resource Estimate¹

- 344Mt at 1,308 ppm TREO (at a 1,000ppm cut-off grade) for ~450 kt contained TREO
- MagREO represents an average of ~23% of TREO grade for ~103 kt contained MagREO
- Project situated in a first-class location, close to port, roads and essential infrastructure

1. Refer to ASX announcement 18 July 2023, "Splinter Rock Maiden Mineral Resource", OD6 confirms that confirms that it is not aware of any new information or data that materially affects the information included in that release. All material assumptions and technical parameters underpinning the release continues to apply and has not materially changed.

TREO (Total Rare Earth Oxide) = $La_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3 + Sm_2O_3 + Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Er_2O_3 + Tm_2O_3 + Yb_2O_3 + Lu_2O_3 + Y_2O_3$ MagREO (Magnet Rare Earth Oxide) = $Nd_2O_3 + Pr_6O_{11} + Tb_4O_7 + Dy_2O_3$ % Magnet REO = (MagREO / TREO)*100

Investment highlights

Prime location for future development

Tier 1 jurisdiction with access to significant infrastructure and known tenure pathway

The premier Australian clay-hosted rare earth deposit

Largest and highest grade in Australia at 344Mt @ 1,308 TREO, with substantial further upside

Strong metallurgical results

Simple leach process with high recoveries of valuable MagREE – comparable or better with industry leading peers

6

A disciplined strategic approach to maximising value

In pursuit of the "best of the best" as input to a future Scoping Study

Sustainably creating value

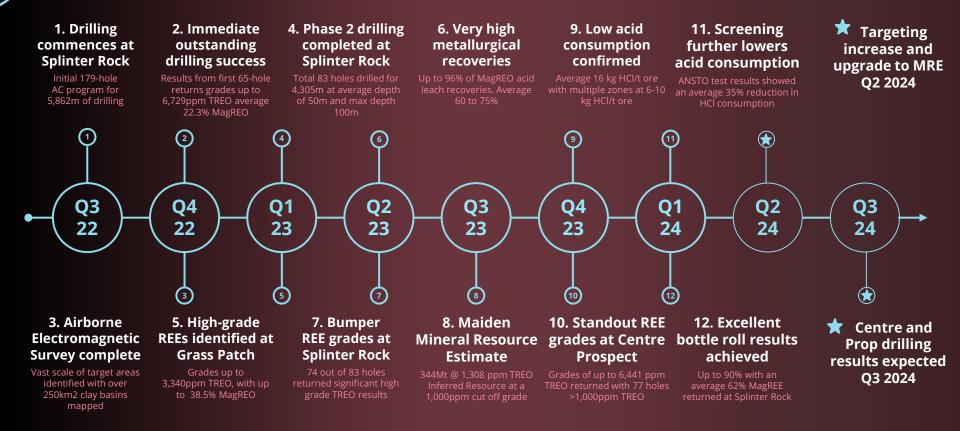
Acting with integrity to responsibility deliver rare earth resources for a low carbon future

Corporate snapshot

High calibre leadership team and tight capital structure

Capital Structure	ASX: OD6
Price per share ¹	A\$0.086
Total number of shares on issue ²	102.45M
Performance rights and options ²	37.55M
Market capitalisation (undiluted) ¹	A\$8.81M
Cash ²	A\$2.09M
Debt ²	Nil
Enterprise value ¹	A\$6.72M

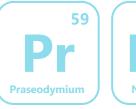
Register Detail


2. As at 31 December 2023. Refer to ASX announcement "Quarterly Activities and Cashflow Report"

Rapid exploration and project advancement

OD6

Systematically adding value


1. Critical magnet rare earth elements

Four critical, high value metals

Light rare earth elements

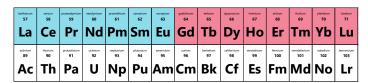
- Electric vehicles
- Wind turbines

Neodymium

- Electric vehicles
- Wind turbines
- Semiconductors Nuclear reactors
 - Semiconductors

Electric vehicles

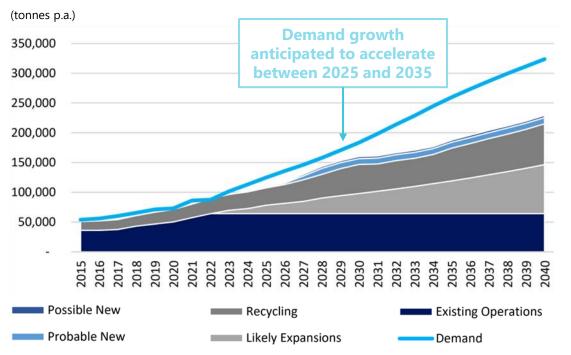
Wind turbines


Heavy rare earth elements

- Xray's
- High temp fuel cells

- Electric vehicles
- Wind turbines
- Semiconductors

hydrogen 1 H																	2 He
ithium 3 Lİ	^{berytium} ₄ Be			Ligh	nt rai	re ea	rth e	lem	ents			s B	6 C	ritrogen 7 N	8 8	fuorine 9	ne Ne
II Na	nagnesium 12 Mg			Heavy rare earth elements							13 Al	^{silicon} 14	15 P	16 S	17 CI	18 Ar	
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	^{manganese} 25 Mn	^{ion} Fe	27 Co	^{rickel} 28 Ni	29 Cu	30 Zn	Ga	Germanium 32	arsanic 33 As	^{sterium} 34	35 Br	36 Kr
Brutisium 37	38 Sr	^{yttrium} 39 Y	40 Zr	41 Nb	⁴² Mo	43 TC	44 Ru	rhodium 45 Rh	^{palladium} 46 Pd	Åŋ Ag	48 Cd	49 In	s.	sitimory 51	52 Te	icdine 53	Xe
ss Cs	se Ba		ntrium 72	^{tantalam} 73 Ta	74	rherium 75	76 05	^{ridum} 77	78 Pt	^{90ld} 79 Au	B Hg	81 TI	82 Pb	83 Bi	84 Po	^{astation} 85	Rn
87 Fr	*** 88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 HS	109 Mt	darmstadtium 110 DS	111 Rg	112 Cn	113 Nh	^{flerovium} 114 FI	115 Mc	116 LV	117 TS	118 Og



1. Significant future global demand expected

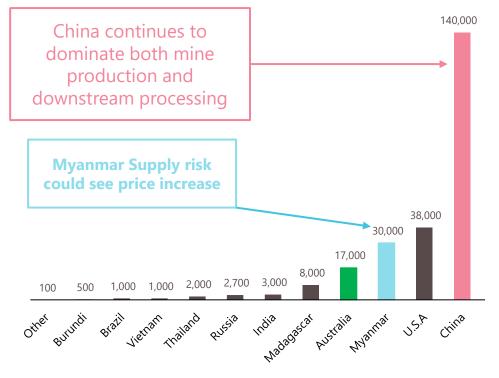
Consumption expected to triple by 2035 with multiple new mines required to meet demand

NdPr Production and Demand (real)

Transition from carbon to renewable economy driving demand for critical magnet rare earth elements, with **7.1% CAGR expected**

Demand underpinned by growth from **electric vehicles, wind power and consumer electronics**

NdPr market growth projections require supply levels to **grow by approximately 80% by 2035** to meet forecast demand – **this is equivalent to +10-20 new mines** Eg ARU = ~3,700tpa NdPr


1. New Australian supply urgently needed

Mine concentration is a significant risk to the global supply chain

Diversity of supply is a priority for governments and corporations with Australia well placed to provide additional capacity

2022 Existing global mine production (t)

Source: USGS Mineral Commodity Summaries, Rare Earths <u>pubs.usgs.gov/periodicals/mcs2023/mcs2023.pdf</u> Benchmark Minerals " <u>Rare earth supply strong in 2024 but Myanmar risk remains</u>"

2. Prime location for future development

Existing infrastructure a key differentiating factor

Established Esperance township

- Proximate to large coastal town Esperance.
- Local workforce potential for any future development

Ready access to Esperance bulk port

- Esperance Port handles over 200 ships p.a.
- Cape size vessel capacity
- Regular container ships link to the export market

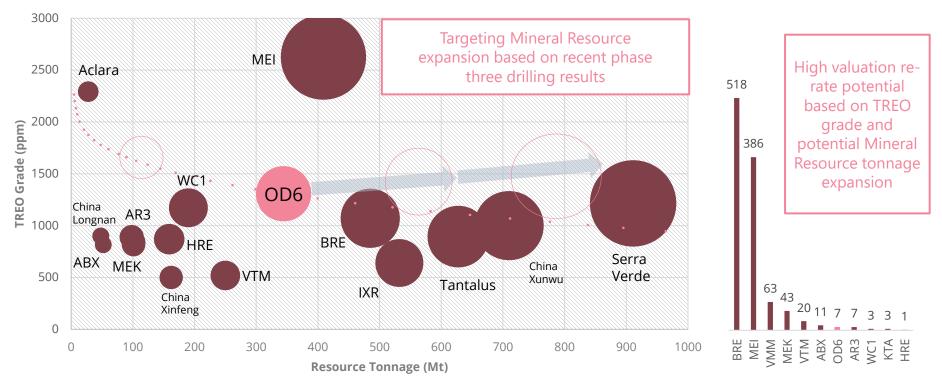
Serviced by existing road network

Established, well maintained road network connecting Splinter Rock and Grass Patch to town and port

Local renewable power connected

- Proven renewable cap
- Esperance has Dual 4.5 MW wind turbines plus 4 MW solar farm and gas turbines

3. The premier Australian clay-hosted REE project



Inferred Resource of 344Mt @ 1,308ppm TREO with substantial upside from high-grade Inside Centre discovery

Rare earth element deposits

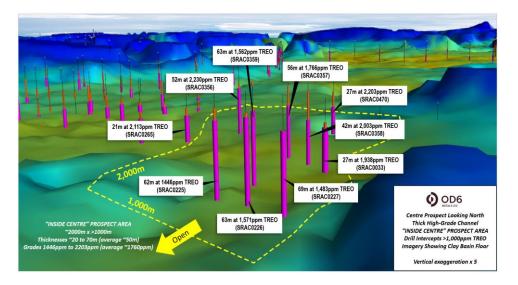
(bubble size reflects contained TREO)

Enterprise value (A\$M)

Refer to 'Peer calculation and reference details'

Source: Adapted from Euroz Hartleys Research Report, Company Reports, Phillip Hellman, Sharemarket Market Capitalisation

3. Exceptional Phase 3 drilling success



Real and substantial upside potential in updated Mineral Resource estimate due in Q2 2024

Significant results at Centre and Inside Centre prospects¹

- 58 metres at 2,060ppm TREO (21.8% MREO) from 21 metres (SRAC0356)
- 77 metres at 1,429ppm TREO (22.5% MREO) from 18 metres (SRAC0357)
- 69 metres at 1,457ppm TREO (25.6% MREO) from 15 metres (SRAC0358)
- 66 metres at 1,519ppm TREO (21.0% MREO) from 21 metres (SRAC0359)
- 52 metres at 1,467ppm TREO (29.6% MREO) from 21 metres (SRAC0333)
- 42 metres at 1,609ppm TREO (21.4% MREO) from 18 metres (SRAC0470)
- 41 metres at 1,611ppm TREO (26.4% MREO) from 6 metres (SRAC0298)
- 43 metres at 1,425ppm TREO (23.4% MREO) from 12 metres (SRAC0300)
- 24 metres at 2,379ppm TREO (25.5% MREO) from 18 metres (SRAC0303)
- 30 metres at 1,806ppm TREO (27.5% MREO) from 42 metres (SRAC0321)
- 34 meters at 1,465ppm TREO (23.2% MREO) from 36 metres (SRAC0469)
- 43 meters at 1,425ppm TREO (21.8% MREO) from 12 metres (SRAC0300)
- 31 meters at 1,339ppm TREO (22.6% MREO) from 21 metres (SRAC0328)
- 30 meters at 1,309ppm TREO (22.5% MREO) from 21 metres (SRAC0351)
- 24 meters at 1,810ppm TREO (21.5% MREO) from 48 metres (SRAC0340)
- 21 meters at 1,672ppm TREO (24.0% MREO) from 15 metres (SRAC0297)

Inside Centre – Thick, high-grade mineralisation

Inside Centre is a new 2km x 1km discovery that is up to 69m thick, with grades of 1,400ppm to 2,200ppm TREO and has the potential to be a standout first stage project

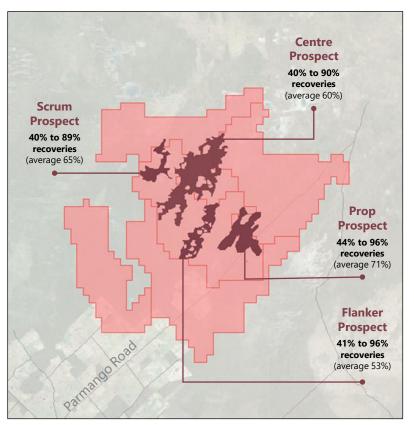
3. What does an economic project look like?

Splinter Rocks meets all the 'Key Value Drivers' and has the hallmarks of a highly economic project

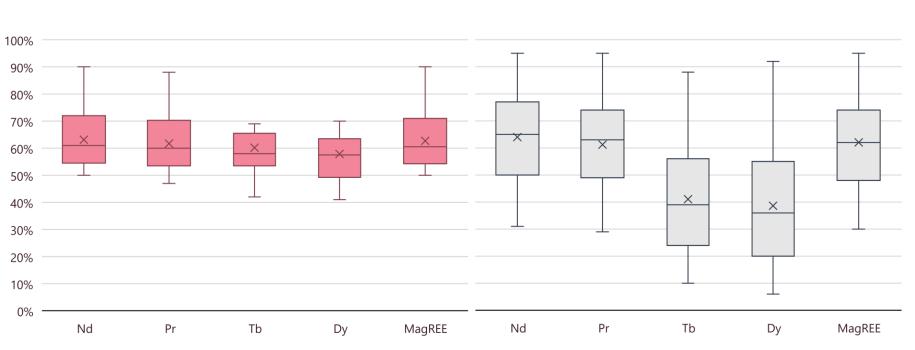
Key Value Drivers

- ✓ Grade >1,000 ppm TREO
- ✓ MagREO content >20%
- ✓ Treatment rate > 4 Mtpa
- ✓ Mine life >20 years
- ✓ Resource size >150 Mt
- ✓ Recovery >50%
- Low stripping ratio
- ✓ Low reagent usage / cost
- Low power costs

Clay volume treated (tpa)	TREO (ppm)	Metallurgical recovery	TREO produced (tpa)	MagREO produced @23% (tpa)	% payable	AUD:USD	Revenue p.a. @ US\$50/kg TREO
10,000,000	1,500	60%	9,000	2,070	70%	0.65	A\$484M
7,500,000	1,500	60%	6,750	1,553	70%	0.65	A\$363M
5,000,000	1,500	60%	4,500	1,035	70%	0.65	A\$242M
5,000,000	1,000	60%	3,000	690	70%	0.65	A\$161M
5,000,000	800	60%	2,400	552	70%	0.65	A\$129M
4,000,000	800	60%	1,920	442	70%	0.65	A\$103M
3,000,000	800	60%	1,440	331	70%	0.65	A\$ 77M
2,000,000	800	60%	960	221	70%	0.65	A\$ 51M
1,000,000	800	60%	480	110	70%	0.65	A\$ 25M


This is conceptual in nature, but is used as a basis for the 1,000ppm resource cut-off and the "reasonable prospects of eventual economic extraction" under JORC

4. Already strong metallurgical results


Identifying the best metallurgical areas to further refine potential processing route

- Very high metallurgical recoveries achieved using simple acid leach
- Average 62% MagREO recovery (range 43% to 87%) at 20g/I HCI
- Average 16 kg HCl/t ore with multiple zones at 6kg to 10kg HCl/t ore
- Extractions at **15g/L to 20 g/L HCI** appear to be a balance point on recovery, acid strength and acid consumption.
- Neodymium (Nd), Praseodymium (Pr), Terbium (Tb) and Dysprosium (Dy) have very similar recoveries
- Screening of coarse-grained material expected to reduce leach material by 30-50% without appreciable loss of MagREO
- Recent recovery trials to identify "best of the best" areas

4. Magnet rare earth recovery

OD6 has closed the gap to its industry leading peers on MagREE recoveries

Refer to 'Peer calculation and reference details' ', and OD6 ASX Announcement 27-2-2024 ${\bf Note:}~{\rm OD6}~{\rm recoveries}~{\rm represent}~{\rm results}$ from the Centre prospect

Meteoric Resources (~A\$392M EV)

OD6 Metals (~A\$7M EV)

4. Clay-hosted rare earths

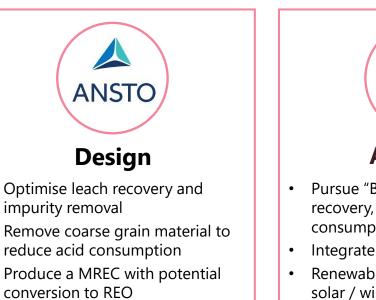
Similar to IAC, clay-hosted REEs present a highly attractive processing option in a tier-1 jurisdiction

	Clay-hosted REE	lonic Clay-hosted (IAC) REE						
	ODD6 METALS LTD	METEORIC RESOURCES SERBA						
Locations	 Esperance, Western Australia – Tier-1 mining jurisdiction with access to significant infrastructure 	 South America, Brazil 						
Exploration	\checkmark • Quick and low-cost exploration: shallow air core drilling	\checkmark • Quick and low-cost exploration: shallow air core drilling						
Mining	 Surface mining, within minimal strip ratio Pits backfilled and rehabilitated 	 Surface mining, within minimal strip ratio Pits backfilled and rehabilitated 						
Processing	 Chloro-Alakli plant makes both acid and base onsite Simple 6 hour leach in hydrochloric acid (\$250/t)¹ Requires more tanks for leaching process Sodium hydroxide to neutralise solution (\$250/t) 	 Ionic process needs multiple offsite produced reagents Simple 0.5 hour leach in ammonium sulphate (\$350/t)¹ and sulphuric acid (\$300/t)¹ Ammonium bicarbonate to neutralise solution (\$350/t)¹ 						
Recoveries	 Up to 90% (62% average) 	✓ • Up to $95\%^2$ (46.2% average) ³						
Payability	 High recoveries containing valuable light and heavy rare earths (Nd, Pr, Dy, Tb) 	 High recoveries containing valuable light and heavy rare earths (Nd, Pr, Dy, Tb) 						

Refer to 'Peer metallurgy results reference details

Note: (1) All figures are estimated/verbal current supplier pricing, (2) MEI MagREE recoveries at Calderia, (3) Average MagREE recoveries across MEI, VMM and Alcara

5. A disciplined strategic approach

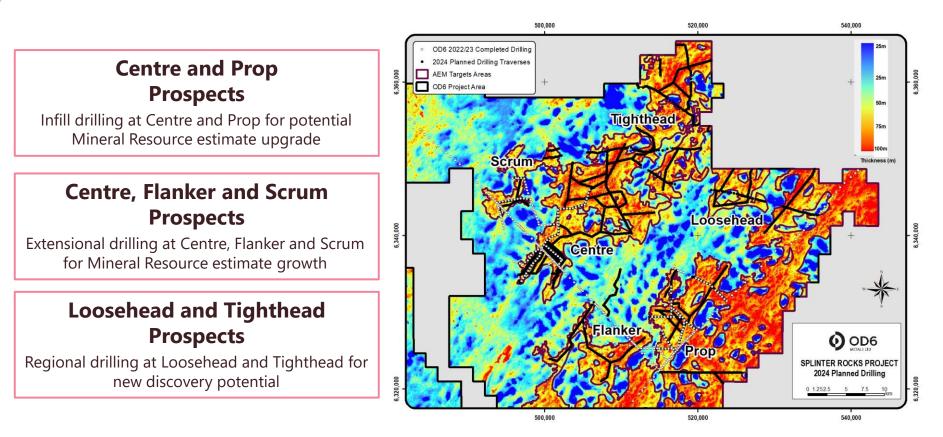


In pursuit of the "best of the best" for maximum value creation

- Target thick areas with low strip ratio potential
- Low-cost exploration, high value for money
- CSIRO collaboration

•

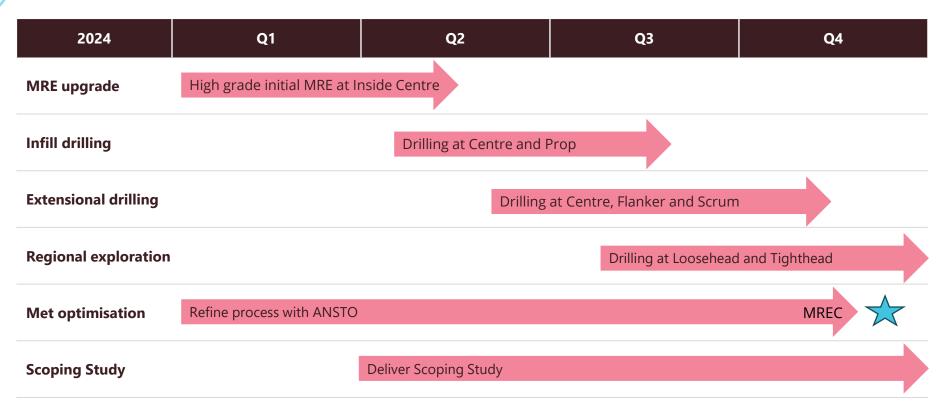
• Refine process with ANSTO



Advance

- Pursue "Best of the Best" grade, recovery, stripping ratio and acid consumption
- Integrate ChlorAlkali Benefits
- Renewable energy sourcing solar / wind
- Existing Infrastructure port, road
- Deliver Scoping Study

5. Growth and infill drilling scheduled through 2024 O OD6


Targeted drilling focused on building and refining sizeable Mineral Resource base

5. Scheduled program of activities

Rapidly advancing and de-risking

6. Sustainably creating value

Our aim is to minimize our

environmental impact, look

after our people and grow

with our communities to

create value for our

investors

Acting with integrity to responsibly deliver rare earth resources for a low carbon future

Our sustainability priorities:

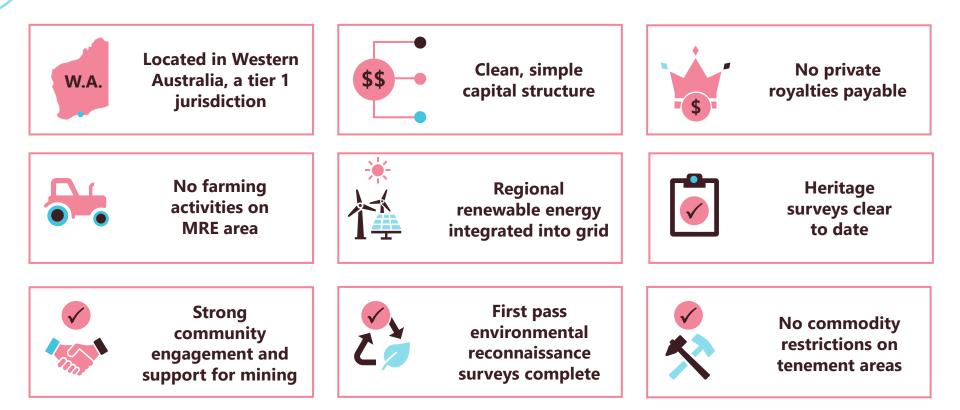
Workplace health and saftey and mental health

Aboriginal and Traditional Owner engagement

Integrity and ethical business practices

Regulatory compliance and change

Focused on protecting local flora and fauna

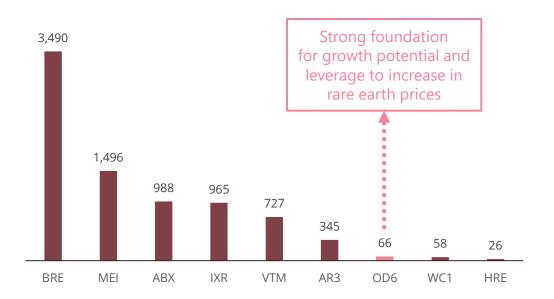


Corporate governance and risk management

6. The Splinter Rock Project

OD6

A world-class clay-hosted REE asset progressively being de-risked


Significant relative value upside potential

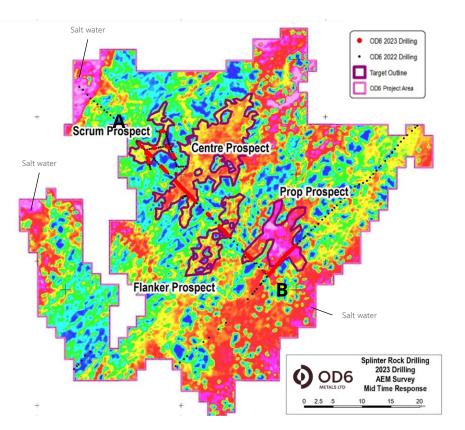
Significant upside potential compared to peers

Comparison of enterprise value per MagREO tonne

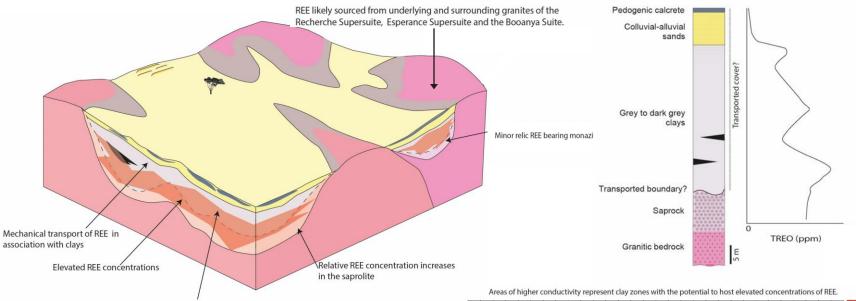
(A\$/tonne MagREO)

Key catalysts for relative value uplift relative to peers on per tonne MagREO basis

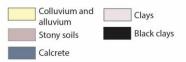
- Targeting Mineral Resource Estimate upgrade and expansion in Q2 2024
- *Inside Centre Prospect* has potential to be a standout first stage project
- Further regional exploration scheduled with success to expand resource base
- Metallurgical optimisation ongoing with high recoveries and low acid consumption de-risking project flow-sheet and future economics
- Scoping Study targeted by end of 2024

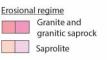

•

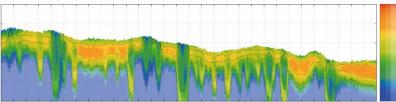
Airborne Electromagnetic (AEM) Success


State of the art AEM Modelling by CSIRO

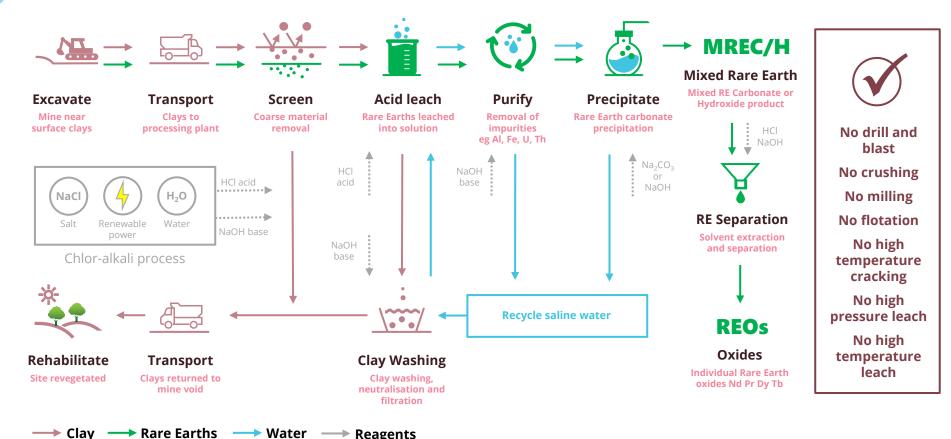
- AEM has facilitated mapping of clay locations, expanse and potential thickness
- 400km² of clay basins mapped
- Clays are conductive, and are readily mapped with AEM (yellow to red colours).
- Granites are not conductive (blues to green)
- 210 out of 228 holes (~92%) returned significant high grade TREO results from last two drill programs
- Sydney Harbour is 55 km^{2 (1)}


Conceptual Geological Formation


Collaborating with CSIRO to model the clay basins



Paleo-hydromorphic dispersion and transport in paleovalleys - adsorption by clays and minor precipitation of secondary REE bearing minerals including phosphates.



Indicative processing steps

Simplified process map to deliver rare earth products

26

Acid consumption and reagent costs

Important to consider total reagent requirements, not just one step in the process

- Vendor discussions confirm viability of potential site-based chlor-alkali facility
- Indicative pricing for a chlor-alkali electrolyser is approximately £3M each (A\$5.7M)
- Chlor-alkali plant also provides a sodium hydroxide (NaOH) co-product which is utilised in impurity removal and precipitation of a final Mixed Rare Earth Product (MREC/H)
- A single chlor-alkali electrolyser has the potential to produce 62ktpa HCl and 69ktpa of NaOH which, at an average consumption of 16 kg HCl / tonne of ore, is sufficient to treat ~4Mtpa of REE bearing clay

Refer to publicly available information associated with a <u>BICHLOR™ Electrolyser</u>,

Clay-hosted REE projects – what's the difference?

Processing steps are similar, mainly using different reagents and time

OD6 Proposed Flowsheet

Water Fertilizer Vegetation - Mining Directio Clavs Ionic Impurity **Rare Earth** Exchange Removal Carbonate **Rare Earths** Precipitation Carbonate Clays Nanofiltration Water Clavs and Reverse ofClavs Clays Washing Osmosis Rare Farth **Mining Direction** to Mine

Key points to note

- OD6 Longer leach times = more tanks
- Both process use acid to lower the pH to 1 and 3 to 4
- Both process need to neutralise the acid to remove impurities and produce a MREC/H
- Lower pHs have more impurities to remove
- Chloro-Alakli plant makes both acid and base onsite
- Ionic process needs multiple offsite produced reagents

Reagents and estimated costs

- Hydrochloric Acid + Sodium Hydroxide \$250/t HCl¹ + \$250/t NaOH (Chlor-alkali onsite)
- Ammonium Sulphate + Sulphuric Acid + Ammonium Bicarbonate: \$350/t (NH₄)₂SO₄ + \$300/t H₂SO₄ + \$350/t (NH₄)HCO₃²
- Consumption Rates are Key to Total Reagent Cost
- All projects will need Flocculants, Potable Water, other chemicals

Aclara and Meteoric Proposed Flowsheet

Metallurgical test program moving forward

Working with ANSTO to methodically optimise the process

- Review leach performance of upgraded fines fractions following screening @75 μm
- Undertake sighter bottle roll tests of selected Phase 3 and 2 drill samples
- Bench scale tests to assess and determine preferred slurry densities and further optimise leach conditions
- Slurry leach tests to assess slurry handling, filtration and washing
- Impurity removal trials at various pH conditions, temperatures and reagents
 - Assess potential use of Resins in pulp and liquid to assist in impurity removal
 - Assess Ion Exchange on "leach" liquor and selective elution of REE versus impurities eg Al,Fe
 - Assess Nanofiltration to produce a retentate with increased REE concentration, and a permeate consisting of "clean" acid for recycle
- Mixed rare earth precipitation of carbonates and hydroxides
- Process modelling and techno-economic comparison of overall flowsheet options
- Mini pilot scale testing of composited bulk samples
- Apply process model to assess various options to convert the mixed rare earth carbonate/hydroxide in a downstream refinery to multiple potential rare earth oxides

Splinter Rock Mineral Resource estimate

At 1,000 ppm cutoff grade

Australia's highest grade and largest clay hosted MRE

Delineated from less than 5% of identified target area

Prospect	Category	Tonnes (Mt)	TREO (ppm)	Pr ₆ O ₁₁ (ppm)	Nd ₂ O ₃ (ppm)	Tb₄O ₇ (ppm)	Dy ₂ O ₃ (ppm)	MagREO (ppm)	MagREO (% of TREO)
Centre	Inferred	149	1,423	71.2	244.6	2.6	14.1	329	23.1
Scrum	Inferred	120	1,222	57.7	208.1	2.7	14.7	283	23.2
Flanker	Inferred	42	1,246	58.9	210.9	2.9	16.0	288	23.2
Prop	Inferred	33	1,180	49.9	179.4	2.3	12.9	244	20.7
Total	Inferred	344	1,308	62.5	220.2	2.6	14.5	300	22.9

The Mineral Resource estimate has been reported by an independent Competent Person in accordance with the provisions of the JORC Code

TREO (Total Rare Earth Oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Lu2O3 + Y2O3 + Y2O3 + Dy2O3 + Ho2O3 + Co2O3 + Tm2O3 + Yb2O3 + Lu2O3 + Y2O3 + Y2O3 + Dy2O3 +

MagREO (Magnet Rare Earth Oxide) = Nd2O3 + Pr6O11 + Tb4O7 + Dy2O3

% Magnet REO = (MagREO / TREO)*100

For full Mineral Resource estimate details refer to OD6 ASX announcement 18 July 2023, "Maiden Mineral Resource Estimate". OD6 is not aware of any new information or data that materially affects the Mineral Resource estimate included in that release. All material assumptions and technical parameters underpinning the Mineral Resource estimate in that release continue to apply and have not materially changed.

Splinter Rock Mineral Resource estimate

31

Focused on quality over quantity of resource

A quality MRE targeting the best of the best grade, recovery, strip ratio and acid consumption

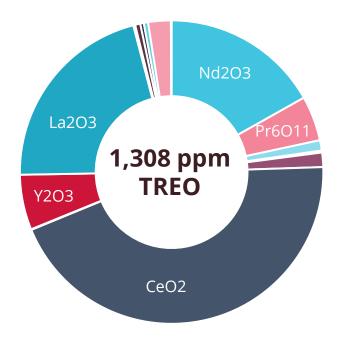
	Cut-off grade (ppm TREO)	Tonnes (Mt)	TREO (ppm)	Contained TREO (k tonne)	MagREO (ppm)	MagREO (% of TREO)	Contained MagREO (k tonnes)
	400	1,141	869	992	198	22.7	225
	600	838	1,006	842	230	22.9	192
	800	583	1,140	664	262	30.0	152
ſ	1,000	344	1,308	450	300	22.9	103
	1,200	196	1,471	288	338	22.9	66
	1,400	105	1,625	171	372	22.9	39

For full Mineral Resource estimate details refer to OD6 ASX announcement 18 July 2023, "Maiden Mineral Resource Estimate". OD6 is not aware of any new information or data that materially affects the Mineral Resource estimate included in that release. All material assumptions and technical parameters underpinning the Mineral Resource estimate in that release continue to apply and have not materially changed. Final recovered tonnes will be significantly less than the contained tonnes stated and subject to ongoing metallurgical testwork.

MRE TREO value and distribution

Nd, Pr, Dy, Tb represent ~90% of potential contained value

TREO REE value


MagREO

is ~90%

of value

TREO % distribution

TREO (Total Rare Earth Oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tb2O3 + Vb2O3 + Lu2O3 + Y2O3

Nd2O3

MagREO (Magnet Rare Earth Oxide) = Nd2O3 + Pr6O11 + Tb4O7 + Dy2O3

Pr6011

Note: Contained value is based on spot pricing sourced from Adamas Intelligence " Rare Earth Pricing Quarterly Outlook" Q2 2023. The chart is illustrative only of where rare earth economic value will be primarily derived from.

Rare Earths are key to decarbonisation

Our goal is to build a mine that minimises greenhouse gas emissions and long term power costs

Ultimately Net Zero is the goal for what could be a multi-generational production facility

Existing Esperance township 2x 4.5Mw Wind Turbines and 4MW Solar Farm

Peer calculations and reference details

Company	ASX code	Measured: Indicated: Inferred Ratio (Mt)	Market capitalisation (A\$)	Net cash (A\$)	Enterprise value (A\$)	Reference
OD6 Metals	OD6	0 : 0 : 344	A\$ 9M	A\$ 2M	A\$ 7M	Splinter Rock Maiden Mineral Resource, 18 July 2023 Quarterly Activities Report December 2023, 23 January 2024 Investor Presentation, 23 November 2023
Meteoric Resources	MEI	0 : 0 : 409	A\$ 418M	A\$ 32M	A\$ 386M	Quarterly Activities Report December 2023, 31 January 2024 Caldeira REE Project Maiden Mineral Resource, 1 May 2023
Victory Metals	νтм	0 : 0 : 250	A\$ 23M	A\$ 2M	A\$ 20M	North Stanmore Initial Mineral Resource Estimate, 2 August 2023 Quarterly Activities Report December 2023, 22 January 2024
West Cobar Metals	WC1	0 : 39 : 151	A\$ 5M	A\$ 2M	A\$ 3M	Salazar Clay-REE Resource Quadruples, 9 August 2023 Quarterly Activities Report December 2023, 31 January 2024
Krakatoa Resources	КТА	0 : 40 : 61	A\$ 5M	A\$ 2M	A\$ 3M	KTA Delivers Maiden Rare Earth Mineral Resource, 21 November 2022 Quarterly Activities Report December 2023, 30 January 2024
Australian Rare Earths	AR3	1 : 98 : 88	A\$ 17M	A\$ 10M	A\$ 7M	84% increase in Resource confirms Koppamurra as a world-scale ionic clay- hosted rare earths province, 19 September 2023 Quarterly Activities Report December 2023, 24 January 2024
Meeka Metals	МЕК	0:0:98	A\$ 48M	A\$ 5M	A\$ 43M	High-Grade Rare Earth MRE at Circle Valley, 14 June 2023 Quarterly Activities Report December 2023, 31 January 2024
ABX Group	ABX	0:45:7	A\$ 17M	A\$ 6M	A\$ 11M	ABx Rare Earth Resources Exceed 50 Million Tonnes, 20 November 2023 Quarterly Activities Report December 2023, 31 January 2024
Heavy Rare Earths	HRE	0 : 0 : 159	A\$ 3M	A\$ 2M	A\$ 1M	Five fold increase in Mineral Resources to 159Mt @ 870ppm TREO at Cowalinya project in WA, 3 October 2023 Quarterly Activities Report December 2023, 25 January 2024
Viridis Mining and Metals	VMM	N/A	A\$ 65M	A\$ 2M	A\$ 63M	Quarterly Activities Report December 2023, 31 January 2024
Brazilian Rare Earths	N/A	0:0:485	A\$ 567M	A\$ 49M	A\$ 518M	AFR Reports and IPO presentation: expected to list late December 2023 Quarterly Activities Report December 2023, 29 January 2024. Corporate Presentation December 2024.

Peer metallurgy results reference details

Company	ASX code	Time	Recovery (high)	Recovery (Average)	Reference
OD6 Metals	OD6	6 hours	90%	62%	Excellent Metallurgical Recoveries Continue at Splinter Rocks, 27 February 2024
Meteoric Resources	MEI	0.5 hours	95%	62%	First Mixed Rare Earth Carbonate (MREC) Produced for Caldeira REE Project, 29 February 2024
Viridis Mining and Metals	VMM	N/A	46%	40%	Initial Metallurgical work confirms Colossus as a true Iconic Adsorption Clay Project, 29 August 2023
Aclara	N/A	0.5 hours	N/A	24%	Amended and Restated NI 43-101 Technical Report, 15 September 2021
Heavy Rare Earths	HRE		88%	71%	Metallurgical Work Expands Area for Potential Development, 12 March 2024

Contact us

Registered Office

c/o LCP Group Level 1, 50 Kings Park Road West Perth WA 6005 Phone: +61 8 6189 8515 Email: info@od6metals.com.au

Share Registry

Computershare Investor Services Level 11, 172 St Georges Tce Perth WA 6000

www.od6metals.com.au

ASX I OD6