

Australian Critical Rare Earth Minerals

Asian Rare Earths Conference 22 & 23 April 2024

ASX I OD6

Important Information

Disclaimer

This presentation has been prepared by OD6 Metals Ltd (ACN 654 839 602) (**OD6**) and is current as at the date of this document. The information contained in this presentation is for informational purposes only and does not constitute an offer to issue, or arrange to issue, securities or other financial products. The information contained in this presentation is not investment or financial product advice and is not intended to be used as the basis for making an investment decision. The presentation has been prepared without considering the investment objectives, financial situation or needs of any particular person. Before making an investment decision, you should consider, with or without the assistance of a financial adviser, whether an investment is appropriate considering your particular investment needs, objectives and financial circumstances. Past performance is no guarantee of future performance. Any securities that may be issued by OD6 should be considered speculative and there is no guarantee implied or explicit that there will be a return on the capital invested or that any dividend will be paid or that there will be an increase in the price or value of OD6's shares in the future.

No representation or warranty, express or implied, is made as to the fairness, accuracy, completeness or correctness of the information, opinions and conclusions contained in this presentation. To the maximum extent permitted by law, none of OD6, its directors, employees or agents, nor any other person accepts any liability, including, without limitation, any liability arising out of fault of negligence, for any loss arising from the use of the information contained in this presentation. In particular, no representation or warranty, express or implied is given as to the accuracy, completeness or correctness, likelihood of achievement or reasonableness or any forecasts, prospects or returns contained in this presentation nor is any obligation assumed to update such information. Such forecasts, prospects or returns are by their nature subject to significant uncertainties and contingencies.

No New Information

The information in this report relating to the Mineral Resource estimate for the Splinter Rock Project is extracted from the Company's ASX announcement dated 17 July 2023. OD6 confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the Mineral Resource estimate continue to apply.

This document contains information extracted from ASX market announcements reported in accordance with the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (2012 JORC Code) and available for viewing at https://www.od6metals.com.au/investors/asx-announcements/. OD6 confirms that it is not aware of any new information or data that materially affects the information included in any original ASX market announcement.

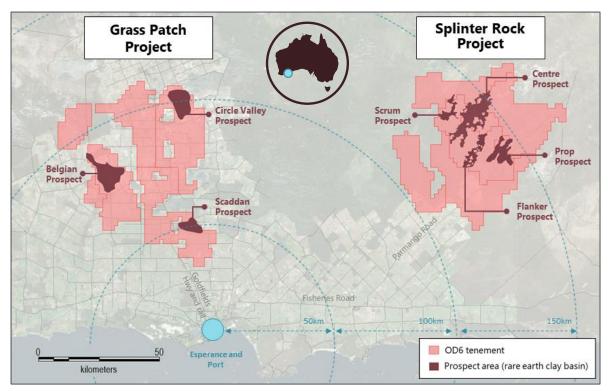
Forward Looking Statements

Certain statements contained in this presentation, including information as to the future financial or operating performance of OD6 and its projects, are forward looking statements. Such forward looking statements:

- may include, among other things, statements regarding incomplete and uncertain proposals or targets, production and prices, operating costs and results, capital expenditures, and are or may be based on assumptions and estimates related to future technical, economic, market, political, social and other conditions;
- are necessarily based upon several estimates and assumptions that, while considered reasonable by OD6, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies; and
- involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forwardlooking statements.

OD6 disclaims any intent or obligation to update publicly any forward-looking statements, whether as a result of new information, future events or results or otherwise. The words "believe", "expect", "anticipate", "indicate", "contemplate", "target", "plan", "intends", "continue", "budget", "estimate", "may", "will", "schedule" and similar expressions identify forward looking statements. All forward looking statements made in this presentation are qualified by the foregoing cautionary statements. Recipients are cautioned that forward looking statements are not guarantees of future performance and accordingly investors are cautioned not to put undue reliance on forward looking statements due to the inherent uncertainty therein.

No representation is made that, in relation to the tenements the subject of this presentation, OD6 has now or will at any time in the future develop further resources or reserves within the meaning of the Australian Code for Reporting of Exploration Results, Mineral resources and Ore Reserves (**The JORC Code**).


Globally significant clay-hosted rare earth discovery

100%-owned project areas in one of the world's great mining jurisdictions

Splinter Rock Maiden Inferred Mineral Resource Estimate¹

- 344Mt at 1,308 ppm TREO
 (at a 1,000ppm cut-off grade)
 for ~450 kt contained TREO
- MagREO represents an average of ~23% of TREO grade for ~103 kt contained MagREO
- Project situated in a first-class location, close to port, roads and essential infrastructure

^{1.} Refer to ASX announcement 18 July 2023, "Splinter Rock Maiden Mineral Resource", OD6 confirms that it is not aware of any new information or data that materially affects the information included in that release. All material assumptions and technical parameters underpinning the release continues to apply and has not materially changed.

TREO (Total Rare Earth Oxide) = $La_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3 + Sm_2O_3 + Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Er_2O_3 + Tm_2O_3 + Yb_2O_3 + Lu_2O_3 + Y_2O_3$ MagREO (Magnet Rare Earth Oxide) = $Nd_2O_3 + Pr_6O_{11} + Tb_4O_7 + Dy_2O_3$ % Magnet REO = (MagREO / TREO)*100

Investment highlights

- Targeting critical, high-value magnet rare earth elements
 Consumption expected to triple by 2035 with +10-20 new mines required to meet demand
 - Prime location for future development

 Tier 1 jurisdiction with access to significant infrastructure and known tenure pathway
 - The premier Australian clay-hosted rare earth deposit
 Largest and highest grade in Australia at 344Mt @ 1,308 TREO, with substantial further upside
 - Strong metallurgical results
 Simple leach process with high recoveries of valuable MagREE comparable or better with industry leading peers
 - **5** A disciplined strategic approach to maximising value In pursuit of the "best of the best" as input to a future Scoping Study
- 6 Sustainably creating value
 Acting with integrity to responsibility deliver rare earth resources for a low carbon future

1. Critical magnet rare earth elements

Four critical, high value metals

- · Electric vehicles
- · Wind turbines

- · Electric vehicles
- · Wind turbines
- Semiconductors

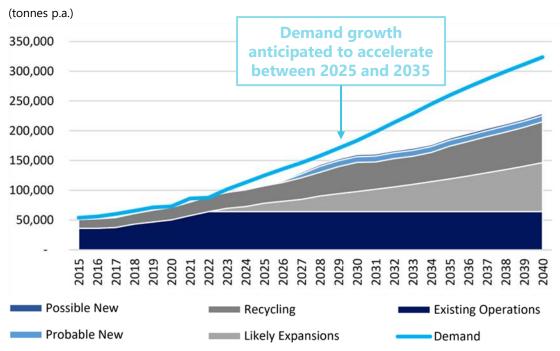
Heavy rare earth elements

Terbium

- · Electric vehicles Wind turbines
- Nuclear reactors
- Semiconductors

- Xray's
- · High temp fuel cells
- · Electric vehicles
- · Wind turbines
- Semiconductors

hydrogen 1																	helium 2
Н																	He
lithium 3	beryllium 4											boron 5	carbon 6	nitrogen 7	osygen 8	fluorine 9	neon 10
Li	Be			Ligh	ıt raı	re ea	rth e	elem	ents			В	C	N	0	F	Ne
sodium 11	magnesium 12			Hea	vv ra	are e	arth	elen	nent	s		aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
Na	Mg				- ,					-		Αl	Si	Р	S	CI	Ar
potassium 19	calcium 20	scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
rubidium 37	strontium 38	yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellerium 52	icdine 53	senon 54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	ı	Xe
cesium 55	barium 56		hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
Cs	Ва		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
francium 87	radium 88		rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meiterium 109	darmstadtium 110	roentgenium 111	copernicium 112	nihonium 113	flerovium 114	moscovium 115	Evermorium 116	termessine 117	oganesson 118
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og


La	ss Ce	Praseodymium 59	Nd	Pm	Sm	europium 63 Eu	Gd Gd	65 Tb	dysprosium 66 Dy	Ho	68 Er	thulium 69	ymetium 70 Yb	Lu
actinium 89	thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102	lawrendum 103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

1. Significant future global demand expected

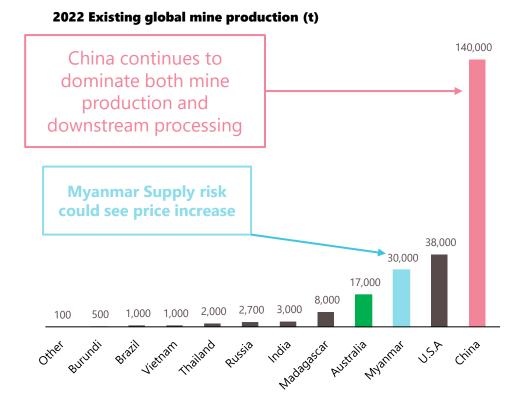
Consumption expected to triple by 2035 with multiple new mines required to meet demand

Transition from carbon to renewable economy driving demand for critical magnet rare earth elements, with

7.1% CAGR expected

Demand underpinned by growth from electric vehicles, wind power and consumer electronics

NdPr market growth projections require supply levels to **grow by approximately 80% by 2035** to meet forecast demand – **this is equivalent to +10-20 new mines**Eq ARU = ~3,700ktpa NdPr


1. New Australian supply urgently needed

Mine concentration is a significant risk to the global supply chain

Diversity of supply is a priority for governments and corporations with Australia well placed to provide additional capacity

2. Prime location for future development

OD6

Existing infrastructure a key differentiating factor

Established Esperance township

- Proximate to large coastal town Esperance.
- Local workforce potential for any future development

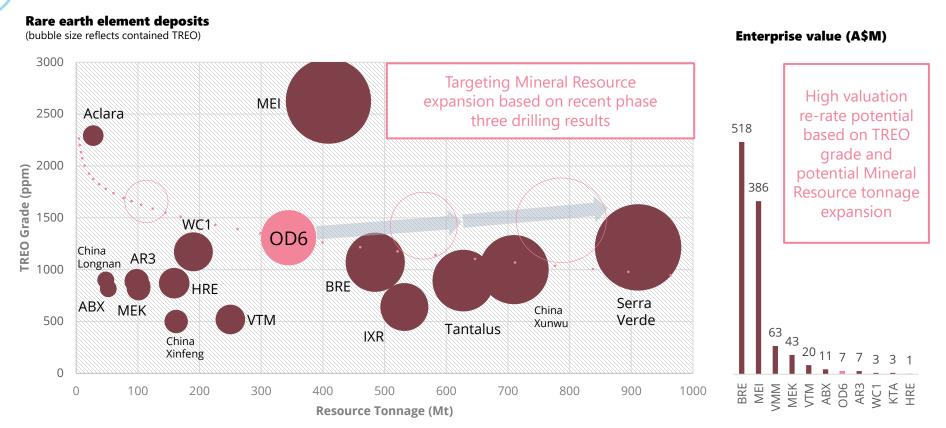
Ready access to Esperance bulk port

- Esperance Port handles over 200 ships p.a.
- Cape size vessel capacity
- Regular container ships link to the export market

Serviced by existing road network

Established, well
maintained road
network connecting
Splinter Rock and Grass
Patch to town and port

Local renewable power connected



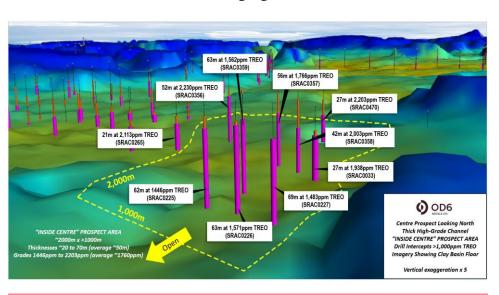
- Proven renewable cap
- Esperance has Dual
 4.5 MW wind turbines
 plus 4 MW solar farm
 and gas turbines

3. The premier Australian clay-hosted REE project

Inferred Resource of 344Mt @ 1,308ppm TREO with substantial upside from high-grade Inside Centre discovery

Refer to 'Peer calculation and reference details' **Source:** Adapted from Euroz Hartleys Research Report, Company Reports, Phillip Hellman, Sharemarket Market Capitalisation

3. Exceptional Phase 3 drilling success



Real and substantial upside potential in updated Mineral Resource estimate due in Q2 2024

Significant results at Centre and Inside Centre prospects¹

- **58 metres** at 2,060ppm TREO (21.8% MREO) from 21 metres (SRAC0356)
- 77 metres at 1,429ppm TREO (22.5% MREO) from 18 metres (SRAC0357)
- **69 metres** at 1,457ppm TREO (25.6% MREO) from 15 metres (SRAC0358)
- **66 metres** at 1,519ppm TREO (21.0% MREO) from 21 metres (SRAC0359)
- **52 metres** at 1,467ppm TREO (29.6% MREO) from 21 metres (SRAC0333)
- **42 metres** at 1,609ppm TREO (21.4% MREO) from 18 metres (SRAC0470)
- **41 metres** at 1,611ppm TREO (26.4% MREO) from 6 metres (SRAC0298)
- 43 metres at 1,425ppm TREO (23.4% MREO) from 12 metres (SRAC0300)
- **24 metres** at 2,379ppm TREO (25.5% MREO) from 18 metres (SRAC0303)
- **30 metres** at 1,806ppm TREO (27.5% MREO) from 42 metres (SRAC0321)
- **34 meters** at 1,465ppm TREO (23.2% MREO) from 36 metres (SRAC0469)
- 43 meters at 1,425ppm TREO (21.8% MREO) from 12 metres (SRAC0300)
- **31 meters** at 1,339ppm TREO (22.6% MREO) from 21 metres (SRAC0328)
- **30 meters** at 1,309ppm TREO (22.5% MREO) from 21 metres (SRAC0351)
- **24 meters** at 1,810ppm TREO (21.5% MREO) from 48 metres (SRAC0340)
- 21 meters at 1,672ppm TREO (24.0% MREO) from 15 metres (SRAC0297)

Inside Centre - Thick, high-grade mineralisation

Inside Centre is a new 2km x 1km discovery that is up to 69m thick, with grades of 1,400ppm to 2,200ppm TREO and has the potential to be a standout first stage project

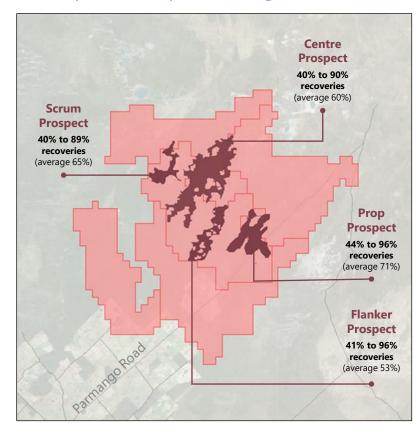
3. What does an economic project look like?

Splinter Rocks meets all the 'Key Value Drivers' and has the hallmarks of a highly economic project

Key Value Drivers

- ✓ Grade >1,000 ppm TREO
- ✓ MagREO content >20%
- √ Treatment rate > 4 Mtpa
- ✓ Mine life > 20 years
- ✓ Resource size >150 Mt
- ✓ Recovery >50%
- ✓ Low stripping ratio
- ✓ Low reagent usage / cost
- ✓ Low power costs

Clay volume treated (tpa)	TREO (ppm)	Metallurgical recovery	TREO produced (tpa)	MagREO produced @23% (tpa)	% payable	AUD:USD	Revenue p.a. @ US\$50/kg TREO
10,000,000	1,500	60%	9,000	2,070	70%	0.65	A\$484M
7,500,000	1,500	60%	6,750	1,553	70%	0.65	A\$363M
5,000,000	1,500	60%	4,500	1,035	70%	0.65	A\$242M
5,000,000	1,000	60%	3,000	690	70%	0.65	A\$161M
5,000,000	800	60%	2,400	552	70%	0.65	A\$129M
4,000,000	800	60%	1,920	442	70%	0.65	A\$103M
3,000,000	800	60%	1,440	331	70%	0.65	A\$ 77M
2,000,000	800	60%	960	221	70%	0.65	A\$ 51M
1,000,000	800	60%	480	110	70%	0.65	A\$ 25M


This is conceptual in nature, but is used as a basis for the 1,000ppm resource cut-off and the "reasonable prospects of eventual economic extraction" under JORC

4. Already strong metallurgical results

Identifying the best metallurgical areas to further refine potential processing route

- Very high metallurgical recoveries achieved using simple acid leach
- Average 62% MagREO recovery (range 43% to 87%) at 20g/I HCI
- Average 16 kg HCl/t ore consumption
- Extractions at 15g/L to 20 g/L HCl appear to be a balance point on recovery, acid strength and acid consumption.
- Neodymium (Nd), Praseodymium (Pr), Terbium (Tb) and Dysprosium (Dy) have very similar recoveries
- Removal of coarse-grained material increases head grade by 157% and decreases acid consumption by an average of 35% to approximately 10kg HCl/t ore
- Recent recovery trials to identify "best of the best" areas

5. A disciplined strategic approach

O ODE

In pursuit of the "best of the best" for maximum value creation

Explore

- Identify high-grade, 'sweet-spot' REE zones
- Aggressively grow Mineral Resources via latent scale potential
- Target thick areas with low strip ratio potential
- Low-cost exploration, high value for money
- CSIRO collaboration

Design

- Optimise leach recovery and impurity removal
- Remove coarse grain material to reduce acid consumption
- Produce a MREC with potential conversion to REO
- Refine process with ANSTO

Advance

- Pursue "Best of the Best" grade, recovery, stripping ratio and acid consumption
- Integrate ChlorAlkali Benefits
- Renewable energy sourcing solar / wind
- Existing Infrastructure port, road
- Deliver Scoping Study

6. Sustainably creating value

Acting with integrity to responsibly deliver rare earth resources for a low carbon future

Our aim is to minimize our environmental impact, look after our people and grow with our communities to create value for our investors

Our sustainability priorities:

Workplace health and saftey and mental health

Aboriginal and Traditional Owner engagement

Integrity and ethical business practices

Regulatory compliance and change

Focused on protecting local flora and fauna

Corporate governance and risk management


6. The Splinter Rock Project

O OD6

A world-class clay-hosted REE asset progressively being de-risked

Located in Western Australia, a tier 1 jurisdiction

Clean, simple capital structure

No private royalties payable

No farming activities on MRE area

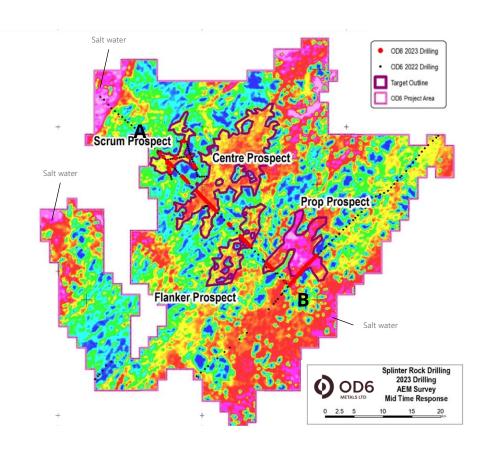
Regional renewable energy integrated into grid

Heritage surveys clear to date

Strong community engagement and support for mining

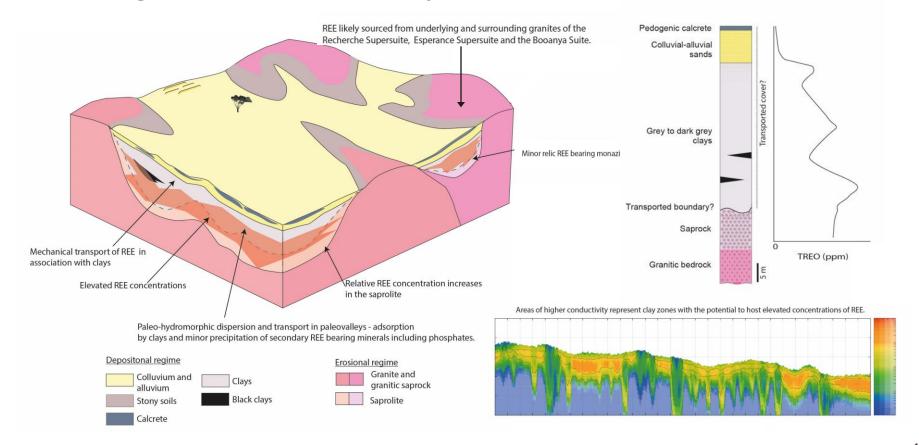
First pass environmental reconnaissance surveys complete

No commodity restrictions on tenement areas



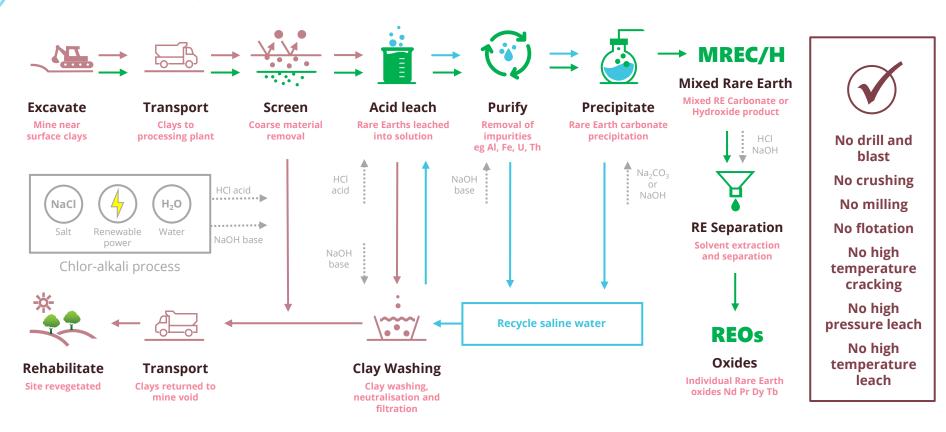
Airborne Electromagnetic (AEM) Success

State of the art AEM Modelling by CSIRO


- AEM has facilitated mapping of clay locations, expanse and potential thickness
- 400km² of clay basins mapped
- Clays are conductive, and are readily mapped with AEM (yellow to red colours).
- Granites are not conductive (blues to green)
- 210 out of 228 holes (~92%) returned significant high grade TREO results from last two drill programs
- Sydney Harbour is 55 km^{2 (1)}

Conceptual Geological Formation

Collaborating with CSIRO to model the clay basins

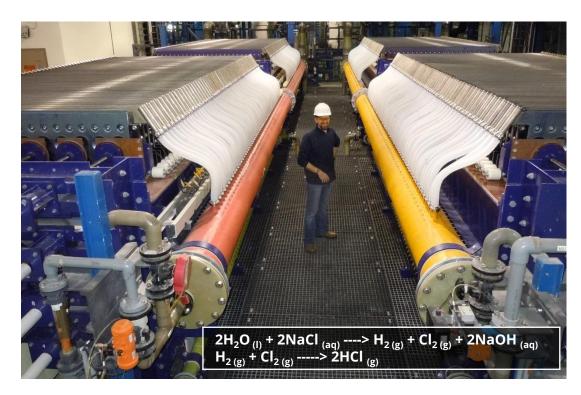

Indicative processing steps

OD6

Simplified process map to deliver rare earth products

Rare Earths

Water



Acid consumption and reagent costs

Important to consider total reagent requirements, not just one step in the process

- Vendor discussions confirm viability of potential site-based chlor-alkali facility
- Indicative pricing for a chlor-alkali electrolyser is approximately £3M each (A\$5.7M)
- Chlor-alkali plant also provides a sodium hydroxide (NaOH) co-product which is utilised in impurity removal and precipitation of a final Mixed Rare Earth Product (MREC/H)
- A single chlor-alkali electrolyser has the potential to produce 62ktpa HCl and 69ktpa of NaOH which, at an average consumption of 16 kg HCl / tonne of ore, is sufficient to treat ~4Mtpa of REE bearing clay


Refer to publicly available information associated with a <u>BICHLOR™ Electrolyser</u>,

Clay-hosted REE projects – what's the difference?

Processing steps are similar, mainly using different reagents and time

OD6 Proposed Flowsheet

Key points to note

- OD6 Longer leach times = more tanks
- Both process use acid to lower the pH to 1 and 3 to 4
- Both process need to neutralise the acid to remove impurities and produce a MREC/H
- · Lower pHs have more impurities to remove
- · Chloro-Alakli plant makes both acid and base onsite
- Ionic process needs multiple offsite produced reagents

Aclara and Meteoric Proposed Flowsheet

Reagents and estimated costs

- Hydrochloric Acid + Sodium Hydroxide
 \$250/t HCl¹ + \$250/t NaOH (Chlor-alkali onsite)
- Ammonium Sulphate + Sulphuric Acid + Ammonium Bicarbonate: \$350/t (NH₄)₂SO₄ + \$300/t H₂SO₄ + \$350/t (NH₄)HCO₃²
- Consumption Rates are Key to Total Reagent Cost
- All projects will need Flocculants, Potable Water, other chemicals

Metallurgical test program moving forward

Working with ANSTO to methodically optimise the process

- Review leach performance of upgraded fines fractions following screening @75 μm
- Undertake sighter bottle roll tests of selected Phase 3 and 2 drill samples
- Bench scale tests to assess and determine preferred slurry densities and further optimise leach conditions
- Slurry leach tests to assess slurry handling, filtration and washing
- Impurity removal trials at various pH conditions, temperatures and reagents
 - Assess potential use of Resins in pulp and liquid to assist in impurity removal
 - Assess Ion Exchange on "leach" liquor and selective elution of REE versus impurities eg Al,Fe
 - Assess Nanofiltration to produce a retentate with increased REE concentration, and a permeate consisting of "clean" acid for recycle
- Mixed rare earth precipitation of carbonates and hydroxides
- Process modelling and techno-economic comparison of overall flowsheet options
- Mini pilot scale testing of composited bulk samples
- Apply process model to assess various options to convert the mixed rare earth carbonate/hydroxide in a downstream refinery to multiple potential rare earth oxides

Splinter Rock Mineral Resource estimate

At 1,000 ppm cutoff grade

Australia's highest grade and largest clay hosted MRE

Delineated from less than 5% of identified target area

Prospect	Category	Tonnes (Mt)	TREO (ppm)	Pr ₆ O ₁₁ (ppm)	Nd ₂ O ₃ (ppm)	Tb ₄ O ₇ (ppm)	Dy ₂ O ₃ (ppm)	MagREO (ppm)	MagREO (% of TREO)
Centre	Inferred	149	1,423	71.2	244.6	2.6	14.1	329	23.1
Scrum	Inferred	120	1,222	57.7	208.1	2.7	14.7	283	23.2
Flanker	Inferred	42	1,246	58.9	210.9	2.9	16.0	288	23.2
Prop	Inferred	33	1,180	49.9	179.4	2.3	12.9	244	20.7
Total	Inferred	344	1,308	62.5	220.2	2.6	14.5	300	22.9

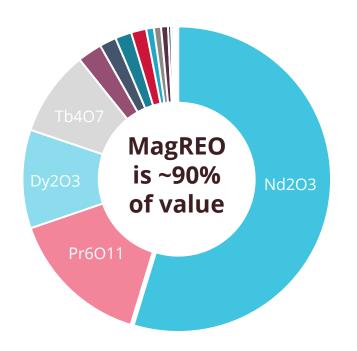
The Mineral Resource estimate has been reported by an independent Competent Person in accordance with the provisions of the JORC Code

TREO (Total Rare Earth Oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Lu2O3 + Y2O3 MagREO (Magnet Rare Earth Oxide) = Nd2O3 + Pr6O11 + Tb4O7 + Dy2O3 % Magnet REO = (MagREO / TREO)*100

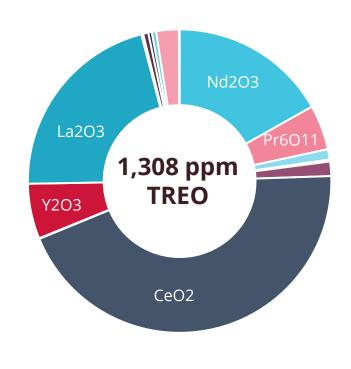
Splinter Rock Mineral Resource estimate

Focused on quality over quantity of resource

Cut-off grade (ppm TREO)	Tonnes (Mt)	TREO (ppm)	Contained TREO (k tonne)	MagREO (ppm)	MagREO (% of TREO)	Contained MagREO (k tonnes)
400	1,141	869	992	198	22.7	225
600	838	1,006	842	230	22.9	192
800	583	1,140	664	262	30.0	152
1,000	344	1,308	450	300	22.9	103
1,200	196	1,471	288	338	22.9	66
1,400	105	1,625	171	372	22.9	39


For full Mineral Resource estimate details refer to OD6 ASX announcement 18 July 2023, "Maiden Mineral Resource Estimate". OD6 is not aware of any new information or data that materially affects the Mineral Resource estimate included in that release. All material assumptions and technical parameters underpinning the Mineral Resource estimate in that release continue to apply and have not materially changed. Final recovered tonnes will be significantly less than the contained tonnes stated and subject to ongoing metallurgical testwork.

MRE TREO value and distribution



Nd, Pr, Dy, Tb represent ~90% of potential contained value

TREO REE value

Value	Distr	ibutior	1
54.7%	■ Nd2O3	16.8%	_
15.0%	■ Pr6O11	4.8%	REC
10.4%	Dy2O3	1.1%	MagRE
9.0%	■ Tb4O7	0.2%	_
2.6%	■ Gd2O3	1.5%	
1.8%	■ CeO2	44.3%	
1.7%	■ Lu2O3	0.1%	
1.6%	■ Y2O3	5.9%	
0.8%	■ La2O3	21.2%	
0.8%	■ Ho2O3	0.2%	
0.7%	■ Er2O3	0.5%	
0.3%	■ Eu2O3	0.4%	
0.2%	■ Yb2O3	0.5%	
0.2%	■ Sm2O3	2.4%	
0.1%	■ Tm2O3	0.1%	

TREO % distribution

TREO (Total Rare Earth Oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Lu2O3 + Y2O3 MagREO (Magnet Rare Earth Oxide) = Nd2O3 + Pr6O11 + Tb4O7 + Dy2O3

Peer calculations and reference details

Company	ASX code	Measured: Indicated: Inferred Ratio (Mt)	Market capitalisation (A\$)	Net cash (A\$)	Enterprise value (A\$)	Reference
OD6 Metals	OD6	0:0:344	A\$ 9M	A\$ 2M	A\$ 7M	Splinter Rock Maiden Mineral Resource, 18 July 2023 Quarterly Activities Report December 2023, 23 January 2024 Investor Presentation, 23 November 2023
Meteoric Resources	MEI	0:0:409	A\$ 418M	A\$ 32M	A\$ 386M	Quarterly Activities Report December 2023, 31 January 2024 Caldeira REE Project Maiden Mineral Resource, 1 May 2023
Victory Metals	VTM	0:0:250	A\$ 23M	A\$ 2M	A\$ 20M	North Stanmore Initial Mineral Resource Estimate, 2 August 2023 Quarterly Activities Report December 2023, 22 January 2024
West Cobar Metals	WC1	0:39:151	A\$ 5M	A\$ 2M	A\$ 3M	Salazar Clay-REE Resource Quadruples, 9 August 2023 Quarterly Activities Report December 2023, 31 January 2024
Krakatoa Resources	КТА	0:40:61	A\$ 5M	A\$ 2M	A\$ 3M	KTA Delivers Maiden Rare Earth Mineral Resource, 21 November 2022 Quarterly Activities Report December 2023, 30 January 2024
Australian Rare Earths	AR3	1:98:88	A\$ 17M	A\$ 10M	A\$ 7M	84% increase in Resource confirms Koppamurra as a world-scale ionic clay- hosted rare earths province, 19 September 2023 Quarterly Activities Report December 2023, 24 January 2024
Meeka Metals	MEK	0:0:98	A\$ 48M	A\$ 5M	A\$ 43M	High-Grade Rare Earth MRE at Circle Valley, 14 June 2023 Quarterly Activities Report December 2023, 31 January 2024
ABX Group	ABX	0:45:7	A\$ 17M	A\$ 6M	A\$ 11M	ABx Rare Earth Resources Exceed 50 Million Tonnes, 20 November 2023 Quarterly Activities Report December 2023, 31 January 2024
Heavy Rare Earths	HRE	0:0:159	А\$ 3М	A\$ 2M	A\$ 1M	Five fold increase in Mineral Resources to 159Mt @ 870ppm TREO at Cowalinya project in WA, 3 October 2023 Quarterly Activities Report December 2023, 25 January 2024
Viridis Mining and Metals	VMM	N/A	A\$ 65M	A\$ 2M	A\$ 63M	Quarterly Activities Report December 2023, 31 January 2024
Brazilian Rare Earths	N/A	0:0:485	A\$ 567M	A\$ 49M	A\$ 518M	AFR Reports and IPO presentation: expected to list late December 2023 Quarterly Activities Report December 2023, 29 January 2024. Corporate Presentation December 2024.

Data retrieved 12 March 2024

Peer metallurgy results reference details

Company	ASX code	Time	Recovery (high)	Recovery (Average)	Reference		
OD6 Metals	Metals OD6 6 hours		90%	62%	Excellent Metallurgical Recoveries Continue at Splinter Rocks, 27 February 2024		
Meteoric Resources	MEI	0.5 hours	95%	62%	First Mixed Rare Earth Carbonate (MREC) Produced for Caldeira REE Project, 29 February 2024		
Viridis Mining and Metals	VMM	N/A	46%	40%	Initial Metallurgical work confirms Colossus as a true Iconic Adsorption Clay Project, 29 August 2023		
Aclara	N/A	0.5 hours	N/A	24%	Amended and Restated NI 43-101 Technical Report, 15 September 2021		
Heavy Rare Earths	avy Rare Earths HRE		88%	71%	Metallurgical Work Expands Area for Potential Development, 12 March 2024		

Contact us

Registered Office

c/o LCP Group Level 1, 50 Kings Park Road

West Perth WA 6005

Phone: +61 8 6189 8515

Email: info@od6metals.com.au

Share Registry

Computershare Investor Services Level 11, 172 St Georges Tce Perth WA 6000

www.od6metals.com.au

